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INTRODUCTION

We derive inequalities of the form

p-n

a0
a

: fi ,
r e ora>0

agg

where r, is a rational function of degree n, § is a constant independent of »n
and u is Lebesgue measure. We then use these inequalities to construct lower
bounds for the error in approximating e on [0, co) uniformly by rational
functions.

Let 11, denote the set of polynomials with real coefficients of degree at
most n. Let 11} denote the subset of /I, whose elements have non-negative
coefficients and let II) denote the subset of II, whose elements are non-
negative and non-decreasing on |0, co). The prototype result proved by
Loomis [3] is

THEOREM A. Ifp, € II, has only real roots, then

 Pa(x)
3”mm>“

We extend this result to unrestricted polynomials and various classes of
rational functions. As an application we prove

n
= for a>0.
a

THEOREM 1. Let 6> 0.
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(a) There does not exist a sequence {p,/q,} where p,,EH,[ and
q,€ I} so that

_ 1
”e x_pn/qn||[l(<7n+2]<el—+3" fora”’l.

(b) There does not exist a sequence {p,/q,} where p,€ Il and
g, € 11, so that

_ ] i
e~ _pn/an[lé,2(n+2)] <e—2:‘s— JSor all n.

(c) There does not exist a sequence {p,/q,} where p,€E I, and
q, € I, so that

o™ = Pufalisnen < o5 for all n

If the correct order for unrestricted rational approximation to e~ on
[0, 0) is 1/9", as is suggested by the numerical data in [2], then (b) would
show that demanding the numerator be monotonic must hinder the rate of
convergence. Since the order of approximation to e ™ on [0, ) by
reciprocals of polynomials behaves like 1/3" (see [4]), part (a) shows that
requiring the numerator to be non-decreasing and the denominator to have
positive coefficients makes this type of rational approximation essentially
slower then reciprocal polynomial approximation. We note that the constant
in (c) is not as good as the lower bound of 1/54 obtained by Blatt and
Braess in [1].

INEQUALITIES

We prove the following:
Inequality 1. If p, € I, then

L

2
'p(x)>a§<7n for a > 0.

There exists py € 11, so that

o ) g > 1.52N.%
Py(x)

* G. K. Kristiansen (Siam Review Problem 80-16) has shown that there Exist p, € IT,, so
that

lim u

n—co

2"’ P{x)

Palx) > 2'12 =t
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Inequality 2. (a) If r,=p,/q,. where p,, q,€ 11, then

”; E; §<th_1_ Jor a>0.

() Ifr,=p./q,, wherep,, q, € Il, and both p, and q,, have only real
roots, then

,U; ;E; €<%1— Jor a>0.

Let r(x)=x"/(4n — x)". Then wix:r,(x)/r (x) > 1} =4n.
(c) Ifr,=p,/q,, where p, € I, and q, € IT), then

r(x) 2n

y%x} r(x) g<-——— Jor a>0.

(d) Ifr,=Dp./q,, where p, € II and q, € I}, then

4 x>0 "() §<1 for a>0.

Cra () ) a
Ler r,=x". Then

u x;O:r"(x)}a _ Jor a>0.

r{x) a

Inequality 3. If p, € II, has n real roots lying in the interval (a, b), then
a

# §’“ STe—0x—a)

We need the following lemma due to Videnskii [5]:

Pa(x)
Pa(X)

2
= Jfor a>0.

LEMMA A. (a) Suppose p,, € I1,,—I1,,_, and suppose that p,, > 0 on
(a, b). Then

Pan(x) = (x— a)b—x) t(2n~l)(x) + syzu(x)’
where t, €11, _,, s, €II, and both t,_, and s, have only real roots.

(b) Suppose p,, €1,  —1II,, and suppose that p,,,, >0 on
(a, b). Then

Do i(x) = (b—x) £3(x) + (x — a) s3(x)

where t,, s, € IT, and both t, and s, have only real roots.

640/36/1-6
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Proof of Inequality 1. Let @ > 0 and let p, € II,. Choose a and b so that

Pa(x)
&)

By Lemma A we can find s € I1,,, t € II,, so that

>a}cla,bl.

palx) = s(x) + t(x),

where, for x € (a, b],

0<s(x)<pulx), 0K Hx) <pa(x)
and both s and ¢ have only real roots.
Now

>a§= 3x:%§—(();—))2’—>2a

e Pax)
Palx)

Also,
(PA(x)) > 20pi(x)

exactly when
s'(x) + ' (x) > 2a(s(x) + £(x)).
By Theorem A,

x:%,((x—x))> 2a r')

x:7—>2a

x)

Since s and ¢ are non-negative on |a, b], it follows that

=u

n
<—.
a

HxE o, b (2) + 1/() > 2als(x) + 1)) <

and the bound is established.
To construct a lower bound for the inequality we observe that if
0<a,<a,<-<a,,and if p, € Il is the unique polynomial satisfying

Pu(X) — Py(x) = —x{x — a,)’ (x —a,) - (x — an/Z*l)z (x —ay2)

n

A .

- - X bix’,
—
i=0

then

Pa(x)
2.0 >1 on (0,a,,]
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provided that p,(0) > 0. since p,(0) =3"7_, i! b, we have an easy criteria to
check for a given choice of a;. It is a matter of calculation that if

a, =05, a,=1.5, a,=3, a,=>5

a;=8, a, =12, a, =18, ag = 24.32,
then

S ilh;>3.64% 107,

i=1

Proof of Inequality 2. To prove part (a) we note that if r, =p,/gq,, then

fﬁzﬂ_ﬂ'_ (1)
I'n Pn 4y
and
» P @ g, a
e =2 L=
xrn>acxpn/2 U 7, 3
By Inequality 1,
NAA . 2
U x.p"> <= (2)
and
g5 a go(—x) _ @ 4n
g —— X Ly (g — 3
u xq"\ > 3 q,,(—-x)/2 S (3)
and it follows that
r! 8n
ulxi-Lral—.
rn a

To prove part (b) we observe that we can apply Theorem A instead of
Inequality 1 to (2) and (3) above to obtain

2n
<— and y7i
a

I
Pa_ @
Xi—2>—
. 2

x:q_ng:_a

<_._._
g, 2%

a

u

and the result proceeds analogously.
To prove part (c) we note that g,/g, > 0 on |0, co) and, hence,

’.I !
U ix>20:L>algu x:&—}a
rn pn

<—.
a
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To prove part (d) we need only note that if p, € II}, then p,(x) <
(n/x) p,(x) for x > 0 and, hence,

x>0:£ﬁ>a
p

n

rl
x20—"2algu
rn

n
I <
a

The method of proof for Inequality 3 illustrates the method Loomis
employed to prove Theorem 1.

Proof of Inequality 3. We will prove that

_ (x —a)(b — x) py(x) _*
U lx: 0 .00 éag—n 4)
and
i lx0> (x—a)b—x)p,(x) >—a =& (5)
Palx) n

Let y,< - <y, denote the n+ 1 roots of (x —a)(b—x) p,(x) and let
Xo& -+ < x,_, denote the n roots of p,(x). Then y,<x, <y, € - <
X, 1Ly, <x,= 00, Since

(x —a)(b—x) pl(x)/p(x)—> —0 as x— x; from below,

we deduce that on each interval (y;, x;) there exists a point J; so that
(6; — a)(b — 6;) pa(6;) = —ap,(9,).

Since the above equation can have at most n + 1 solutions, we have

(x—a)b—x)pyx)

U 3x: 0> o) >—al= .'io (6; — y))
If
PaX)=x"+ex"" 4o,
then
(x—a)b—x)pi(x)=—nx"*"+ [c(1 —n)+ n(b +a)] x" + -
and

(x —a)b—x)pi(x) + ap(x) = —nx"*' + [e(1 — n) + n(b + a)
+al x4 .-
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From this we deduce that

" a
> 5:‘")’;':7-

<

Equality (4) is proved analogously.

LOWER BOUND ESTIMATES
All three parts of Theorem 1 follow from Inequality 2 and the next lemma.

LEMMA 1. Let n>100 and 2n>A>3 If r,=p./q,. P.49,€1l,,
satisfies

m
then
”e—x . qn(x) 1
Dulx) [0,A(n+2)]>W‘ (6)

Proof. Suppose (6) is false. Then for x € |0, 4(n + 2)].

1 n3 ex
)< =)

s Pa¥)
¢ 2,(x)

Set @ =1—1/2n, then

An

—_————— X
STy SAl+D

The rational function r]/r, is of degree at most 2n. Thus, there exists an
interval |a, @ + 4/2n] contained in [0, A(n + 2)] so that

ralx) L for xelaasr 2
n(X) 2n or Xx [a, a -‘27] .
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Thus, for some { € (a, a + 4/2n)

1 A
2 < )ea+A/2n > l ea+A/2n —r, (a +___) P + r,,(a)|

n*—1 2n
>let =)
>4 (¢ (1-57) n0)
2%(&— <1~—217)e‘ <1+ 31_1)>

A4 4
ST YA
Equivalently,
16n?
n] — 1 A/2n >A

which, since < 4 < 2n and n > 100, is impossible.
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