The Size of $\left\{x: r_{n}^{\prime} / r_{n} \geqslant 1\right\}$ and Lower Bounds for $\left\|e^{-x}-r_{n}\right\|$

Peter Borwein*

Mathematics Department, University of British Columbia, Vancouver, British Columbia, Canada, V6T IW5

Communicated by G. G. Lorentz
Received August 3, 1979

Introduction

We derive inequalities of the form

$$
\mu\left\{x: \frac{r_{n}^{\prime}(x)}{r_{n}(x)} \geqslant \alpha\right\} \leqslant \frac{\beta \cdot n}{\alpha} \quad \text { for } \alpha>0,
$$

where r_{n} is a rational function of degree n, β is a constant independent of n and μ is Lebesgue measure. We then use these inequalities to construct lower bounds for the error in approximating e^{-x} on $[0, \infty)$ uniformly by rational functions.

Let Π_{n} denote the set of polynomials with real coefficients of degree at most n. Let Π_{n}^{+}denote the subset of Π_{n} whose elements have non-negative coefficients and let Π_{n}^{\dagger} denote the subset of Π_{n} whose elements are nonnegative and non-decreasing on $[0, \infty)$. The prototype result proved by Loomis [3] is

Theorem A. If $p_{n} \in \Pi_{n}$ has only real roots, then

$$
\mu\left\{x: \frac{p_{n}^{\prime}(x)}{p_{n}(x)} \geqslant \alpha\right\}=\frac{n}{\alpha} \quad \text { for } \quad \alpha>0 .
$$

We extend this result to unrestricted polynomials and various classes of rational functions. As an application we prove

Theorem 1. Let $\delta>0$.

[^0](a) There does not exist a sequence $\left\{p_{n} / q_{n}\right\}$ where $p_{n} \in \Pi_{n}^{\dagger}$ and $q_{n} \in \Pi_{n}^{+}$so that
$$
\left\|e^{-x}-p_{n} / q_{n}\right\|_{[0, n+2]}^{1 / n} \leqslant \frac{1}{e^{1+\delta}} \quad \text { for all } n
$$
(b) There does not exist a sequence $\left\{p_{n} / q_{n}\right\}$ where $p_{n} \in I_{n}^{\dagger}$ and $q_{n} \in \Pi_{n}$ so that
$$
\left\|e^{-x}-p_{n} / q_{n}\right\|_{[0,2(n+2)]}^{1 / n} \leqslant \frac{1}{e^{2+\delta}} \quad \text { for all } n
$$
(c) There does not exist a sequence $\left\{p_{n} / q_{n}\right\}$ where $p_{n} \in \Pi_{n}$ and $a_{n} \in \Pi_{n}$ so that
$$
\left\|e^{-x}-p_{n} / q_{n}\right\|_{[0,8(n+2)]}^{1 / n} \leqslant \frac{1}{e^{8+\delta}} \quad \text { for all } n
$$

If the correct order for unrestricted rational approximation to e^{-x} on $[0, \infty)$ is $1 / 9^{n}$, as is suggested by the numerical data in [2], then (b) would show that demanding the numerator be monotonic must hinder the rate of convergence. Since the order of approximation to e^{-x} on $[0, \infty)$ by reciprocals of polynomials behaves like $1 / 3^{n}$ (see [4]), part (a) shows that requiring the numerator to be non-decreasing and the denominator to have positive coefficients makes this type of rational approximation essentially slower then reciprocal polynomial approximation. We note that the constant in (c) is not as good as the lower bound of $1 / 54$ obtained by Blatt and Braess in [1].

Inequalities

We prove the following:
Inequality 1. If $p_{n} \in \Pi_{n}$, then

$$
\mu\left\{x: \frac{p_{n}^{\prime}(x)}{p_{n}(x)} \geqslant \alpha\right\} \leqslant \frac{2 n}{\alpha} \quad \text { for } \alpha>0
$$

There exists $p_{N} \in \Pi_{16}$ so that

$$
\mu\left\{x: \frac{p_{N}^{\prime}(x)}{p_{N}(x)} \geqslant 1\right\} \geqslant 1.52 N . *
$$

[^1]$$
\lim _{n \rightarrow \infty} \mu\left\{x: \frac{p_{n}^{\prime}(x)}{p_{n}(x)} \geqslant 2 n\right\}=1 .
$$

Inequality 2. (a) If $r_{n}=p_{n} / q_{n}$, where $p_{n}, q_{n} \in \Pi_{n}$, then

$$
\mu\left\{x: \frac{r_{n}^{\prime}(x)}{r_{n}(x)} \geqslant \alpha\right\} \leqslant \frac{8 n}{\alpha} \quad \text { for } \quad \alpha>0
$$

(b) If $r_{n}=p_{n} / q_{n}$, where $p_{n}, q_{n} \in \Pi_{n}$ and both p_{n} and q_{n} have only real roots, then

$$
\mu\left\{x: \frac{r_{n}^{\prime}(x)}{r_{n}(x)} \geqslant \alpha\right\} \leqslant \frac{4 n}{\alpha} \quad \text { for } \quad \alpha>0
$$

Let $r_{n}(x)=x^{n} /(4 n-x)^{n}$. Then $\mu\left\{x: r_{n}^{\prime}(x) / r_{n}(x) \geqslant 1\right\}=4 n$.
(c) If $r_{n}=p_{n} / q_{n}$, where $p_{n} \in \Pi_{n}$ and $q_{n} \in \Pi_{n}^{\dagger}$, then

$$
\mu\left\{x \geqslant 0: \frac{r_{n}^{\prime}(x)}{r_{n}(x)} \geqslant \alpha\right\} \leqslant \frac{2 n}{\alpha} \quad \text { for } \quad \alpha>0 .
$$

(d) If $r_{n}=p_{n} / q_{n}$, where $p_{n} \in \Pi_{n}^{+}$and $q_{n} \in \Pi_{n}^{\dagger}$, then

$$
\mu\left\{x \geqslant 0: \frac{r_{n}^{\prime}(x)}{r_{n}(x)} \geqslant \alpha\right\} \leqslant \frac{n}{\alpha} \quad \text { for } \quad \alpha>0 .
$$

Let $r_{n}=x^{n}$. Then

$$
\mu\left\{x \geqslant 0: \frac{r_{n}^{\prime}(x)}{r_{n}(x)} \geqslant \alpha\right\}=\frac{n}{\alpha} \quad \text { for } \quad \alpha>0 .
$$

Inequality 3. If $p_{n} \in \Pi_{n}$ has n real roots lying in the interval (a, b), then

$$
\mu\left\{x:\left|\frac{p_{n}^{\prime}(x)}{p_{n}(x)}\right| \leqslant \frac{\alpha}{|(b-x)(x-a)|}\right\}=\frac{2 n}{\alpha} \quad \text { for } \quad \alpha>0 .
$$

We need the following lemma due to Videnskii [5]:
Lemma A. (a) Suppose $p_{2 n} \in \Pi_{2 n}-\Pi_{2 n-1}$ and suppose that $p_{2 n} \geqslant 0$ on (a, b). Then

$$
p_{2 n}(x)=(x-a)(b-x) t_{(n-1)}^{2}(x)+s_{n}^{2}(x)
$$

where $t_{n-1} \in \Pi_{n-1}, s_{n} \in \Pi_{n}$ and both t_{n-1} and s_{n} have only real roots.
(b) Suppose $p_{2 n+1} \in \Pi_{2 n+1}-\Pi_{2 n}$ and suppose that $p_{2 n+1}>0$ on (a, b). Then

$$
p_{2 n+1}(x)=(b-x) t_{n}^{2}(x)+(x-a) s_{n}^{2}(x)
$$

where $t_{n}, s_{n} \in \Pi_{n}$ and both t_{n} and s_{n} have only real roots.

Proof of Inequality 1. Let $\alpha>0$ and let $p_{n} \in \Pi_{n}$. Choose a and b so that

$$
\left\{x: \frac{p_{n}^{\prime}(x)}{p_{n}(x)} \geqslant \alpha\right\} \subset[a, b] .
$$

By Lemma A we can find $s \in \Pi_{2 n}, t \in \Pi_{2 n}$ so that

$$
p_{n}^{2}(x)=s(x)+t(x)
$$

where, for $x \in[a, b]$,

$$
0 \leqslant s(x) \leqslant p_{n}^{2}(x), \quad 0 \leqslant t(x) \leqslant p_{n}^{2}(x)
$$

and both s and t have only real roots.
Now

$$
\left\{x: \frac{p_{n}^{\prime}(x)}{p_{n}(x)} \geqslant \alpha\right\}=\left\{x: \frac{\left(p_{n}^{2}(x)\right)^{\prime}}{p_{n}^{2}(x)} \geqslant 2 \alpha\right\}
$$

Also,

$$
\left(p_{n}^{2}(x)\right)^{\prime} \geqslant 2 \alpha p_{n}^{2}(x)
$$

exactly when

$$
s^{\prime}(x)+t^{\prime}(x) \geqslant 2 \alpha(s(x)+t(x))
$$

By Theorem A,

$$
\mu\left\{x: \frac{s^{\prime}(x)}{s(x)} \geqslant 2 \alpha\right\}=\mu\left\{x: \frac{t^{\prime}(x)}{t(x)} \geqslant 2 \alpha\right\} \leqslant \frac{n}{\alpha}
$$

Since s and t are non-negative on $[a, b]$, it follows that

$$
\mu\left\{x \in[a, b]: s^{\prime}(x)+t^{\prime}(x) \geqslant 2 \alpha(s(x)+t(x))\right\} \leqslant \frac{2 n}{\alpha}
$$

and the bound is established.
To construct a lower bound for the inequality we observe that if $0 \leqslant a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{n / 2}$ and if $p_{n} \in \Pi_{n}$ is the unique polynomial satisfying

$$
\begin{aligned}
p_{n}^{\prime}(x)-p_{n}(x) & =-x\left(x-a_{1}\right)^{2}\left(x-a_{2}\right)^{2} \cdots\left(x-a_{n / 2-1}\right)^{2}\left(x-a_{n / 2}\right) \\
& =-\sum_{i=0}^{n} b_{i} x^{i}
\end{aligned}
$$

then

$$
\frac{p_{n}^{\prime}(x)}{p_{n}(x)} \geqslant 1 \quad \text { on } \quad\left[0, a_{n / 2}\right]
$$

provided that $p_{n}(0)>0$. since $p_{n}(0)=\sum_{i=0}^{n} i!b_{i}$ we have an easy criteria to check for a given choice of a_{i}. It is a matter of calculation that if

$$
\begin{array}{llll}
a_{1}=0.5, & a_{2}=1.5, & a_{3}=3, & a_{4}=5 \\
a_{5}=8, & a_{6}=12, & a_{7}=18, & a_{8}=24.32
\end{array}
$$

then

$$
\sum_{i=1}^{n} i!b_{i} \geqslant 3.64 \times 10^{7}
$$

Proof of Inequality 2. To prove part (a) we note that if $r_{n}=p_{n} / q_{n}$, then

$$
\begin{equation*}
\frac{r_{n}^{\prime}}{r_{n}}=\frac{p_{n}^{\prime}}{p_{n}}-\frac{q_{n}^{\prime}}{q_{n}} \tag{1}
\end{equation*}
$$

and

$$
\left\{x: \frac{r_{n}^{\prime}}{r_{n}} \geqslant \alpha\right\} \subset\left\{x: \frac{p_{n}^{\prime}}{p_{n}} \geqslant \frac{\alpha}{2}\right\} \cup\left\{x: \frac{q_{n}^{\prime}}{q_{n}} \leqslant-\frac{\alpha}{2}\right\}
$$

By Inequality 1,

$$
\begin{equation*}
\mu\left\{x: \frac{p_{n}^{\prime}}{p_{n}} \geqslant \frac{\alpha}{2}\right\} \leqslant \frac{4 n}{\alpha} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu\left\{x: \frac{q_{n}^{\prime}}{q_{n}} \leqslant-\frac{\alpha}{2}\right\}=\mu\left\{x: \frac{q_{n}^{\prime}(-x)}{q_{n}(-x)} \geqslant \frac{\alpha}{2}\right\} \leqslant \frac{4 n}{\alpha} \tag{3}
\end{equation*}
$$

and it follows that

$$
\mu\left\{x: \frac{r_{n}^{\prime}}{r_{n}} \geqslant \alpha\right\} \leqslant \frac{8 n}{\alpha} .
$$

To prove part (b) we observe that we can apply Theorem A instead of Inequality 1 to (2) and (3) above to obtain

$$
\mu\left\{x: \frac{p_{n}^{\prime}}{p_{n}} \geqslant \frac{\alpha}{2}\right\} \leqslant \frac{2 n}{\alpha} \quad \text { and } \quad \mu\left\{x: \frac{q_{n}^{\prime}}{q_{n}} \leqslant \frac{-\alpha}{2}\right\} \leqslant \frac{2 n}{\alpha}
$$

and the result proceeds analogously.
To prove part (c) we note that $q_{n}^{\prime} / q_{n} \geqslant 0$ on $[0, \infty)$ and, hence,

$$
\mu\left\{x \geqslant 0: \frac{r_{n}^{\prime}}{r_{n}} \geqslant \alpha\right\} \leqslant \mu\left\{x: \frac{p_{n}^{\prime}}{p_{n}} \geqslant \alpha\right\} \leqslant \frac{2 n}{\alpha} .
$$

To prove part (d) we need only note that if $p_{n} \in \Pi_{n}^{+}$, then $p_{n}^{\prime}(x) \leqslant$ $(n / x) p_{n}(x)$ for $x>0$ and, hence,

$$
\mu\left\{x \geqslant 0: \frac{r_{n}^{\prime}}{r_{n}} \geqslant \alpha\right\} \leqslant \mu\left\{x \geqslant 0: \frac{p_{n}^{\prime}}{p_{n}} \geqslant \alpha\right\} \leqslant \frac{n}{\alpha} .
$$

The method of proof for Inequality 3 illustrates the method Loomis employed to prove Theorem 1.

Proof of Inequality 3. We will prove that

$$
\begin{equation*}
\mu\left\{x: 0 \leqslant \frac{(x-a)(b-x) p_{n}^{\prime}(x)}{p_{n}(x)} \leqslant \alpha\right\}=\frac{\alpha}{n} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu\left\{x: 0 \geqslant \frac{(x-a)(b-x) p_{n}^{\prime}(x)}{p_{n}(x)} \geqslant-\alpha\right\}=\frac{\alpha}{n} . \tag{5}
\end{equation*}
$$

Let $y_{0} \leqslant \cdots \leqslant y_{n}$ denote the $n+1$ roots of $(x-a)(b-x) p_{n}^{\prime}(x)$ and let $x_{0} \leqslant \cdots \leqslant x_{n-1}$ denote the n roots of $p_{n}(x)$. Then $y_{0} \leqslant x_{0} \leqslant y_{1} \leqslant \cdots \leqslant$ $x_{n-1} \leqslant y_{n} \leqslant x_{n}=\infty$. Since

$$
(x-a)(b-x) p_{n}^{\prime}(x) / p_{n}(x) \rightarrow-\infty \quad \text { as } \quad x \rightarrow x_{i} \text { from below, }
$$

we deduce that on each interval $\left(y_{i}, x_{i}\right)$ there exists a point δ_{i} so that

$$
\left(\delta_{i}-a\right)\left(b-\delta_{i}\right) p_{n}^{\prime}\left(\delta_{i}\right)=-\alpha p_{n}\left(\delta_{i}\right)
$$

Since the above equation can have at most $n+1$ solutions, we have

$$
\mu\left\{x: 0 \geqslant \frac{(x-a)(b-x) p_{n}^{\prime}(x)}{p_{n}(x)} \geqslant-\alpha\right\}=\sum_{i=0}^{n}\left(\delta_{i}-y_{i}\right) .
$$

If

$$
p_{n}(x)=x^{n}+c x^{n-1}+\cdots,
$$

then

$$
(x-a)(b-x) p_{n}^{\prime}(x)=-n x^{n+1}+[c(1-n)+n(b+a)] x^{n}+\cdots
$$

and

$$
\begin{aligned}
(x-a)(b-x) p_{n}^{\prime}(x)+\alpha p_{n}(x)= & -n x^{n+1}+[c(1-n)+n(b+a) \\
& +\alpha] x^{n}+\cdots
\end{aligned}
$$

From this we deduce that

$$
\sum_{i=0}^{n} \delta_{i}-y_{i}=\frac{\alpha}{n}
$$

Equality (4) is proved analogously.

Lower Bound Estimates

All three parts of Theorem 1 follow from Inequality 2 and the next lemma.

Lemma 1. Let $n \geqslant 100$ and $2 n \geqslant A \geqslant \frac{1}{2}$. If $r_{n}=p_{n} / q_{n}, p_{n} q_{n} \in \Pi_{n}$, satisfies

$$
\mu\left\{x \geqslant 0: \frac{r_{n}^{\prime}(x)}{r_{n}(x)} \geqslant \alpha\right\} \leqslant \frac{A n}{\alpha},
$$

then

$$
\begin{equation*}
\left\|e^{-x}-\frac{q_{n}(x)}{p_{n}(x)}\right\|_{[0, A(n+2)]} \geqslant \frac{1}{n^{3} e^{A(n+2)}} \tag{6}
\end{equation*}
$$

Proof. Suppose (6) is false. Then for $x \in\{0, A(n+2) \mid$,

$$
\left|e^{x}-\frac{p_{n}(x)}{q_{n}(x)}\right| \leqslant \frac{1}{n^{3}}\left(\frac{n^{3}}{n^{3}-1}\right) e^{x} \leqslant\left(\frac{e^{x}}{n^{3}-1}\right) .
$$

Set $\alpha=1-1 / 2 n$, then

$$
\mu\left\{x \geqslant 0: \frac{r_{n}^{\prime}(x)}{r_{n}(x)} \geqslant 1-\frac{1}{2 n}\right\} \leqslant \frac{A n}{1-1 / 2 n} \leqslant A(n+1) .
$$

The rational function r_{n}^{\prime} / r_{n} is of degree at most $2 n$. Thus, there exists an interval $\mid a, a+A / 2 n]$ contained in $[0, A(n+2)]$ so that

$$
\frac{r_{n}^{\prime}(x)}{r_{n}(x)} \leqslant 1-\frac{1}{2 n} \quad \text { for } \quad x \in\left[a, a+\frac{A}{2 n}\right]
$$

Thus, for some $\zeta \in(a, a+A / 2 n)$

$$
\begin{aligned}
2\left(\frac{1}{n^{3}-1}\right) e^{a+A / 2 n} & \geqslant\left|e^{a+A / 2 n}-r_{n}\left(a+\frac{A}{2 n}\right)-e^{a}+r_{n}(a)\right| \\
& \geqslant \frac{A}{2 n}\left|e^{\zeta}-r_{n}^{\prime}(\zeta)\right| \\
& \geqslant \frac{A}{2 n}\left(e^{\zeta}-\left(1-\frac{1}{2 n}\right) r_{n}(\zeta)\right) \\
& \geqslant \frac{A}{2 n}\left(e^{\zeta}-\left(1-\frac{1}{2 n}\right) e^{\zeta}\left(1+\frac{1}{n^{3}-1}\right)\right) \\
& \geqslant \frac{A}{2 n}\left(\frac{1}{2 n}-\frac{1}{n^{3}-1}\right) e^{\zeta} \\
& \geqslant \frac{A}{8 n^{2}} e^{b} \geqslant \frac{A}{8 n^{2}} e^{a} .
\end{aligned}
$$

Equivalently,

$$
\frac{16 n^{2}}{n^{3}-1} e^{A / 2 n} \geqslant A
$$

which, since $\frac{1^{\circ}}{2} \leqslant A \leqslant 2 n$ and $n \geqslant 100$, is impossible.

References

1. H.-P. Blatt and D. Braess, Zur Rationalen Approximation von e^{-x} auf $[0, \infty)$, J. Approx. Theory, in press.
2. W. J. Cody, G. Meinardus and R. S. Varga, Chebyshev rational approximation to e^{-x} on $[0,+\infty)$ and applications to heat-conduction problems, J. Approx. Theory 2 (1969), 50-65.
3. Q. I. Rahman and G. Schmeisser, Rational approximation to e^{-x}, J. Approx. Theory 23 (1978), 146-154.
4. A. Schönhage, Zur rationalen Approximierbarkeit von e^{-x} uber $[0, \infty)$, J. Approx. Theory 7 (1973), 395-398.
5. V. S. Videnski, On estimates of the derivatives of a polynomial, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 401-420.

[^0]: * Present address: Department of Mathematics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H8.

[^1]: ${ }^{*}$ G. K. Kristiansen (Siam Review Problem $80-16$) has shown that there Exist $p_{n} \in \Pi_{n}$ so that

